Human in the loop

Ma et al Nat Comm 2024

Elbow trauma detection

1

Rozwag et al Res Dia Int Imaging 2023

🌵 Inserm

Can artificial intelligence pass the Fellowship of the Royal Collegeof Radiologists examination?

26 radiologists vs Milvue

(certified to analyse musculoskeletal and chest radiographs)

http://dx.doi.org/10.1136/bmj-2022-072826 Chen et al. BMJ 2022

Can artificial intelligence pass the Fellowship of the Royal Collegeof Radiologists examination?

axial skeleton (skull, spine, dental views) or abdominal radiographs

http://dx.doi.org/10.1136/bmj-2022-072826 Chen et al. BMJ 2022

🌵 Inserm

Nobody is perfect ...

UNIVERSITÉ

Grenoble Alpes

[Dodge and Karam ICCV 2017]]

🜵 Inserm

Inserm

5

Bias toward texture ...

(a) Texture	image	
81.4%	Indian elephan	t
10.3%	indri	
8.2%	black swan	

b) Conten	t image
71.1%	tabby cat
17.3%	grey fox
3.3%	Siamese cat

c) Texture	-shape cue	conflict
63.9%	Indian	elephant
26.4%	indri	
9.6%	black a	swan

🌵 Inserm

Gin

bone age application (https://www.16bit.ai/bone-age) [14], which analyzes pediatric left-hand posterior—anterior (PA) radiographs and automatically returns the predicted bone age

🌐 Inserm

No control ...

Predicted Bone Age: 13 years, 9 months Inference Time: 1.1783 seconds Predicted Bone Age: 1 year, 1 month Inference Time: 1.0324 seconds Predicted Bone Age: 15 years, 11 months Inference Time: 1.0376 seconds

https://doi.org/10.1007/s00256-021-03880-y

Vulnerable

[Finlayson et al ACM 2019]

🜵 Inserm

Vulnerable

Grenoble Alpes

[Finlayson et al Science 2019]

10

Explicability/ Interpretability / Trustable

11

Approaches	Model comprehensibility	Performance	Reproducibility	Dependency on prior knowledge	Development and training costs ^a	Running costs	Around- the-clock availability	Update costs
Human evaluation	High	Moderate or high	Moderate	High	High	High	Low	High
Rule-based algorithms	High or Moderate	Moderate or high	High	High	Moderate or high	Low	High	High
Feature-based machine- learning methods	Moderate or high	Moderate or high	High	Moderate⁵	Moderate	Low	High	Moderate∝
Deep artificial neural networks	Low or moderate	High	High	Low	Moderate	Low	High	Low

Table 3 | Comparisons between human evaluations and different types of AI approaches

^aThe estimated cost of training professionals that carry out the clinical tasks (human evaluation) or of developing the automated system (rule-based, feature-based or deep-artificial-neural-networkbased) that performs the tasks. ^bFor feature-based machine-learning methods, prior knowledge may facilitate the derivation of useful features from the raw data. ^cWhen the update requires encoding new features, the update cost of feature-based machine-learning methods includes feature engineering and model retraining.

[Yu et al Nat Bio Eng 2018]

Interpretation

[Yu et al Nat Bio Eng 2018]

🌐 Inserm

/

What has been learnt?

\mu Inserm

[Raghu et al Ad Neur Inf Proc Sys 2017]

UNIVERSITÉ

Grenoble Alpes

GIN

What has been learnt?

Kamnitsas et al Media 2017

Inserm

Tissue segmentation

Use of the large contusion cues

Use of both large & fine details

GIN

Image exploration: Man vs Machine

Wu et al. 2019 Vision

🌐 Inserm

Image exploration: Man vs Machine

			Mean 11	Mean 11
Matrice de confusion	Originale	ResNet34	Experts	Novices
Vrai positif				
Vrai Négatif				
Faux positif			Contraction of the second seco	6
Faux Négatif	A			

Vallée R, PhD thesis 2022

🖐 Inserm

/

The curse of the Black-Box

The curse of the Black-Box

Explainability (XAI) Interpretability Understandability [Erasmus et al 2021 Philosophy & Technology]

For who? About what? At which level?

. . .

here is uncertainty (UC) hidden?

[Kendall & Gal 2017 Adv Neural Inf Process Syst]21

The multi-dimensional aspect of uncertainty

Consensus meeting

Voxel level UQ: Ensembling

Lesion level UQ

Goal: Identify FP

Estimate PFP: proba that the lesion is FP using an auxillary classifier Lesion level UQ

Identified lesion

Auxiliary classifier

and position

Note: Lesion are highly variable in shape

Lesions as Graphs

The Graph Isomorphism Network

FC: Fully-connected layer. BN: Batch Normalization. ReLU: Rectified Linear Unit. 27 rameters: 26 700

The Graph Isomorphism Network

e multi-dimensional aspect of certainty

Predictive intervals in volumetry

Definition

- $X \in \mathbb{R}^{N-1}$ are estimates of the true volumes $Y \in \mathbb{R}^{N-1}$, obtained from the segmentation.
- A predictive interval Γ_α(X) is a range of values intended to encompass Y with a specified degree of confidence 1 − α (e.g. 90%, 95%), so that P(Y ∈ Γ_α(X)) ≥ 1 − α

Sampling-based approaches

- Sample a set of estimated volumes X₁, ..., X_K for the given image.
- Estimate the mean $\mu(X)$ and standard deviation $\sigma(X)$.
- Assuming $Y|X \sim \mathcal{N}(\mu(X), \sigma(X))$

 $\Gamma_{\alpha}(X) = [\mu(X) - z\sigma(X), \mu(X) + z\sigma(X)]$

Limitations

- Inference time, due to the sampling procedure.
- The normality assumption, which may not always hold.
- Lack of flexibility, as intervals are symmetrical by design.

Predictive intervals in volumetry

Definition

- $X \in \mathbb{R}^{N-1}$ are estimates of the true volumes $Y \in \mathbb{R}^{N-1}$, obtained from the segmentation.
- A predictive interval Γ_α(X) is a range of values intended to encompass Y with a specified degree of confidence 1 − α (e.g. 90%, 95%), so that P(Y ∈ Γ_α(X)) ≥ 1 − α

User-defined

Sampling-based approaches

- Sample a set of estimated volumes X₁, ..., X_K for the given image.
- Estimate the mean $\mu(X)$ and standard deviation $\sigma(X)$.

Direct approaches

- Directly estimate the quantiles $\hat{t}_{\alpha/2}(X)$ and $\hat{t}_{1-\alpha/2}(X)$.
- The PI is computed as:

$$\Gamma_{\alpha}(X) = [\hat{t}_{\alpha/2}(X), \hat{t}_{1-\alpha/2}(X)] \qquad (2)$$

Conformal prediction

The TriadNet approach

B. Lambert et al. (2023). "TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images". In: UNSURE 2023, LNCS 14291, pp. 32–41 32

The TriadNet approach

Need for calibration

- 120 subjects for training, 40 for calibration and 50 for in-distribution testing. (Multicentric - 3 Tesla: MSSEG 2016 / WMH 2017 / ISBI 2015)
- Intervals calibrated for a target coverage of 90%.
- Metrics (bootstrapping, M = 15000):
 - Mean Average Error: 3.08 ± 0.46 mL
 - Empirical Coverage: $92.06 \pm 5.34\%$

The multi-dimensional aspect of uncertainty

Answer to anything

DLL trained for Gioblastoma detection

Healthy subject

FLAIR

Abdominal T1w

Know-it-all

DLL trained for Gioblastoma segmentation on T1w

Healthy subject

FLAIR

Abdominal T1w

Artefacted T1w

Input Quality Control

DLL trained for Gioblastoma segmentation on T1w

Why an image is OOD?

- In-distribution ↔ training distribution (T1 MRI of Adult glioblastoma patients)
- Are out-of-distribution:
 - Images corrupted with artifacts.
 - Shifts in the imaged population.
 - Shifts in image modality.
 - Diseases not present in the training set.
 - Incorrect organs.

Input Quality Control

2.5

- 2.0 .1.5 .1.5 .1.5 .1.0 .0 .1.0

0.5

A multi-layer aggregation of MD

[B. Lambert et al. (2023). "Multi-layer Aggregation as a key to feature-based OOD detection". In: UNSURE 2023, Held in Conjunction with MICCAI 2023. LNCS 14291, pp. 104–114]

Brats: 876 subjects for training,30 for validation,227 for in-distribution testing

The optimal layer for OOD detection depends on the segmentation architecture.

The multi-layer scores (Mean and Max) provides high detection accuracy.

Input Quality Control 1.0 . 1.0 1.0 - 79% 0.8 0.8 0.8 True Positive Rate True Positive Rate True Positive Rate Incorrect modality Different tumor Incorrect organ Detection (N=250) (Flair N=227) subtype (N=250)

0.2

0.0

0.0

0.2

0.4

False Positive Rate

100%

1.0

0.8

0.2

0.0

0.0

0.2

0.4

False Positive Rate

0.6

Latent-space distances efficient in detecting images far from the training distribution.

0.6

0.8

1.0

0.2

0.0

0.0

0.2

0.4

False Positive Rate

0.6

0.8

1.0

Output Quality Control

Goal: estimate the true segmentation accuracy.

How: Measure the segmentation variability among models.

We note S_k the individual segmentations and MV the majority vote segmentation Ensemble Prediction Agreement (EPA): EPA = $\frac{1}{K}\sum_{i=1}^{K} \text{Dice}(S_k, MV)$

B. Lambert et al. (2024) "From Out-of-distribution detection to Quality Control". In: Trustworthy AI in Medical Imaging, MICCAI book series

Unified Input-Output control

40

- Confidence is central for AI deployment
- Uncertainty quantification improves user's confidence
- Uncertainty is multidimensional

Validation process

[van des Laak et all Nat Med 2021]

🌵 Inserm

/

Conclusion: AI for Medical Imaging

- Pros:
 - Excellent performances
 - Automatic feature learning
 - Knowledge emergence
 - On the shelves tools
 - Discharge Expert
 - Automatic Quantification

Cons:

- Importance of Image Quality
- Annotation
- Data hungry
- Computational cost
- Black box / trustability
- Specific to one problem
- Adversarial attack
- Catastrophic forgetting
- Ethic, social and law
- Needs for specific tools &infra

Future

- Insert a priori knowledge
- Improve training: interactive, transfert, unsupervised, self-supervised
- Transfert learning
- Appropriate tools /infra for specific applications (e.g. biomedical)
- Clinical Trial for Testing
 - the genericity
 - the robustness to noise (e.g. multicenter studies)
 - Preprocessing / Image quality influence
 - User acceptance
- Evolving models => regulation & validation

Some key points

- Industry races ahead academia
 Mass of data, computer power and money
- AI is both helping and harming the environment
- The world's best new scientist ... AI?
 - Generate new antibodies, drugs, ...
- The number of incidents with the misuse of AI rises
- The demand for AI-related skills increases in all sectors.

More power ...

Number of Parameters of Select Large Language and Multimodal Models, 2019-22 Source: Epoch, 2022 | Chart: 2023 Al Index Report 3.2e+12 Wu Dao 2.0 . 1.0e+12 Megatron-Turing NLG 530B Minerva (540B) Gopher PaLM (540B) 3.2e+1 HyperClova 9 GPT-3 175B (davinci) OPT-175B BLOOM . ė Jurassic-1-Jumbo PanGu-a 6 1.0e+1 GLM-130B a Chinchilla 3.2e+10 GPT-NeoX-20B Turing NLG ٠ DALL-E Codex T5-11B GPT-J-68 ERNIE 3.0 Jurassic-X 1.0e+10 7 Megatron-LM (Original, 8.3B) DALL-E 2 CogView T5-3B Meena 3.2e+9 Wu Dao - Wen Yuan GPT-2 Stable Diffusion (LDM-KL-8-G) ź . ė 1.0e+9 ERNIE-GEN (large) 3.2e+8 1012 10th Kat 100 May 1010 Met 2020 1011 Jan 1011 OCT 1011.Det 1012 NOT 20,00 20PL 20202 \$\$\$\$\$\$\$\$\$\$\$\$ 0,

Training Compute (FLOP) of Significant Machine Learning Systems by Domain, 1950–2022 Source: Epoch, 2022 | Chart: 2023 Al Index Report

UNIVERSITÉ Grenoble Alpes

AI Index Report 2023 Stanford Univ

ų lipi

Inserm

More industrials ...

Number of Parameters of Significant Machine Learning Systems by Sector, 1950–2022 Source: Epoch, 2022 | Chart: 2023 Al Index Report

Estimated Training Cost of Select Large Language and Multimodal Models and Number of Parameters Source: Al Index, 2022 | Chart: 2023 Al Index Report

AI Index Report 2023 Stanford Univ

Environmental impact

ų lipi

Inserm

CO2 Equivalent Emissions (Tonnes) by Selected Machine Learning Models and Real Life Examples, 2022 Source: Luccioni et al., 2022; Strubell et al., 2019 | Chart: 2023 Al Index Report

AI Index Report 2023 Stanford Univ

'Products and services using AI have more benefits than drawbacks,' by Country (% of Total), 2022 Source: IPSOS, 2022 | Chart: 2023 AI Index Report

🌐 Inserm

Different models of Information Flow

UNIVERSITÉ Grenoble Alpes

Yu Nat Bio Eng 2018]

Responsability

- Principes d'une approche responsable à l'appui d'une IA digne de confiance :
 - i) croissance inclusive, développement durable et bien être
 - ii) valeurs centrées sur l'humain et équité
 - iii) transparence et explicabilité
 - iv) robustesse, sûreté et sécurité
 - v) responsabilité.

Elle appelle en outre les acteurs de l'IA à promouvoir et mettre en oeuvre ces cinq principes, selon leurs rôles respectifs.

OCDE 2019

Art History

How characteristics of style are identified? How the patterns evolve?

76921 paintings Train(85%) Val (9.5%) ⁶⁰ Test (5.5%) ₄₀

🖐 Inserm

Elgammal et al. 2018 arxiv 1801.07729

UNIVERSITÉ Grenoble Alpes Rubens

Gin

e-Nosology

From Internist-I/QMR to Med-PaLM-I

Miller RA, Pople HE Jr, Myers JD. INTERNIST-1, An Experimental Computerbased Diagnostic Consultant for General Internal Medicine. N Engl J Med 1982;307:468-76.

Knowledge-based written in LISP

IMMUNOELECTROPHORESIS SERUM IGA INCREASED, IMMUNOELECTROPHORESIS SERUM IGG IN-

From Miller IMIA Yearbook of Medical Informatics 2010

📙 Inserm

From Internist-I/QMR to Med-PaLM-II

You are a helpful medical knowledge assistant. Provide useful, complete, and scientifically-grounded answers to common consumer search queries about health.

Question: How do you treat skin redness?

Complete Answer: It depends on the cause of the skin redness. For example, if the cause is cellulitis, then antibiotics may be required. However, this might be inappropriate for other causes of redness such as eczema. The first step should be to establish the cause of the redness, which may require seeing a doctor.

You are a helpful medical knowledge assistant. Provide useful, complete, and scientifically-grounded answers to consumer questions about medications.

Question: Why take simvastatin?

Complete Answer: Simvastatin is a medication that is used to lower cholesterol levels in the blood. Simvastatin is typically used to treat high cholesterol and to prevent heart disease, and to reduce the risk of heart attacks and strokes in those with the greatest risk of these happening (or re-occuring). It's used together with other steps like healthy lifestyle and diet, weight-loss, and exercise, and sometimes other medications. Simvastatin may also be used to decrease the amount of...

You are a helpful medical knowledge assistant. Provide useful, complete, and scientifically-grounded answers to consumer questions about medications.

Question: How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?

Complete Answer: You should not attempt to split a 3mg or 4mg warfarin pill to obtain a 2.5mg dose. If you are prescribed warfarin in a 2.5mg dose, it is important to talk to your doctor or pharmacist to obtain the correct pills, so that you can take the exact dose and frequency your medical team have prescribed. Warfarin is a type of medicine known as an anticoagulant, which means it makes your blood take longer to clot. The exact amount required to achieve the desired effect can vary.

Large Language Model based

Singhal et al Nat Aug 2023

Inserm

Foundation Models in Healthcare

https://arxiv.org/abs/2108.07258

Bommasani et al 2022

🌐 Inserm

Some references

- <u>Context</u>
 - <u>http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/</u>
- <u>Languages</u>
 - <u>https://www.tensorflow.org/</u>
 - <u>http://torch.ch/</u>
 - <u>http://scikit-learn.org/</u>
 - http://caffe.berkeleyvision.org/
 - •
- Courses
 - Karpathy <u>http://cs231n.github.io/convolutional-networks/</u>
 - Collège de France : Y Le Cun (2015) et S. Maillard (2019 ...)
 - Ng A https://www.coursera.org/learn/machine-learning
 - Nielson M. NN & ML http://neuralnetworksanddeeplearning.com/

• • • • •

