

Grenoble

Michel DOJAT

Research Director Inserm

michel.dojat@inserm.fr

kw: Neuroimaging, Neuroinformatics, Image processing, Machine learning, Human Vision, Parkinson

OUR MISSION

Understanding the brain and developing **innovative therapies** for nervous system diseases

OUR STRATEGY

A **research continuum** from molecules, cells to small animals and humans for the study of neurological, neuromuscular and psychiatric pathologies

OUR STRENGTHS

- Molecular and cellular biology of the neuronal cytoskeleton
- Predictive models of cerebral pathologies
- Mapping of neural networks and their alteration in neuropsychiatric disorders
- / Functional neurosurgery and deep brain stimulation
- / Functional MRI coupled with electrophysiology

GIN

a center dedicated to fundamental and clinical research in the field of neurosciences

UP TO 250 NEUROSCIENTISTS

- / 39 Researchers
- / 19 Clinicians
- / 55 Postdocs and PhD Students
- / 34 Research Professors
- / 57 engineers and technicians

RESEARCH TOPICS AND EXPERIMENTAL APPROACHES

/ Fundamental neurosciences

Cytoskeleton, Intracellular traffic, Synaptic plasticity, Mechanisms studied in normal and pathological conditions (neurobiological diseases, neurodegenerative diseases, myopathies)

/ Pre-clinical and clinical research

Developing tools and concepts Close links with networks such as GREEN, Neuropsynov, NeuroCoG...

Innovative technologies and treatments

Multidisciplinary approaches including human social sciences, and methodological developments (optogenetics, reconstruction of neural networks, electrophysiology...)

La science pour la santé _____ ____ From science to health

Superior Colliculus Dysfunction as a potential biomarker of Parkinson Disease

Michel Dojat

michel.dojat@inserm.fr

A brief introduction to PD-1

- Degenerative disease
- 10 million cases worldwide
- Loss of dopaminergic neurons in the substantia nigra
- Perturbation of other subcortical structures
- Multifactorial: genetics, environment, …
- Pre-motor (silent) phase
 Motor phase leading to handicap

No cure, but symptom management

A brief introduction to PD-2

Degree of disability

Time (years)

🖐 Inserm

7

A brief introduction to PD-2

Time (years)

🖐 Inserm

8

PD: Loop Deregulation

McHaffie et al Trends in Neurosc 2005

Colliculus => multi-sensory structure

Parabrachial complex => nociception

Pedunculopontine nucleus => gait control

Periaqueductal grey nucleus => nociception & avoidance behavior

The Colliculus

The SC has evolved to provide the brain with the location of targets and threats in the peripherical world.

[May Prog Brain Res 2006]

Superior Colliculus

- Receive information directly from the retina
- Occular saccades control
- Attention focalisation
- Novelty detection
- Plannificiation and decision

Superior Colliculus

Dysfunction due to PD? Yes in PD Rat's model

V. Coizet (CR, GIN)

Fonctionnel (Rolland et al. Neuroscience, 2013)

_

What's happen in Humans?

fMRI in Human - I

Some methodological difficulties

- small structure (\approx 10 voxels, 3T) => 1.5mm³
- close to vein => Heart Rate signals as covariate of non-interest
- rapidly saturated

Bellot et al. Neuroimage 2016

fMRI in Healthy Subjects-II

Bellot et al. Neuroimage 2016

N=30

fMRI in Healthy Subjects-II

fMRI in PD Subjects

Moro et al. Ann Neuro 2020

Dynamic Causal Modelling - I

Bellot et al. NeuroImClin 2022

Dynamic Causal Modelling - II

How information is processed?

Conclusion

- In de novo Patients
 - Function role of V1 is preserved
 - Functional deficit of CS
 - Functional deficit of LGN
 - No functional restoration with 6-months L-dopa treatment

Non conscious deficit

Which Psychophysical tests for the diagnosis of such a deficit?

Scene perception

Brain construction of stable vision of the world

Motion perception during saccadic eye movements

Eric Castet and Guillaume S. Masson

Is effective when

 ✓ stimulus optimized to preferentially activated the magnocellular pathway (motion detectors sensitive to a restricted range of spatio-temporal frequencies)

Stimulus : spatio-temporal progressive wave of **low spatial frequency** (0.17 cy/°) and **high velocity** (360 °/s) moving in the same direction as the saccade

🟁 © 2000 Nature

Cortical support of this perception?

PhD G. Nicolas

- Coll. A. Guérin-Dugué PhD: G. Nicolas
 - Hypothesis H1:
 - Implication of V1-V2, MT-V5 when subjects see the motion of the stimulus during the saccade.
 - Methods:
 - 49 participants
 - EEG, ET, MRI

Protocol

- **Condition of interest** : perception of the stimulus motion with stimulus moving from left С to right
- **Control condition** : no perception of the stimulus motion with stimulus moving from С bottom to top

Magnocellular pathway involvement

- These findings could provide an additional argument in favor of the perception of motion during saccades.
- Magnocellular pathway activativation.
- In normal condition, what's happen in PD?
 - Hypothesis H2: Intra-Saccadic Motion perception is altered in PD patients
 - Two students A Deverin (June-Sept 2021) & P. Perelle Avr-July 2022 have improved the Stimulus presentation
 - Master 2023:
 - Intra-saccadique motion perception; Acquisition and analysis of oculometric signals

PD & Hallucinations

What we know

- Frequent: 20– 40 % (Diederich et al Nat Rev Neurol 2009)
- No fully due to adversariel effect of L-Dopa (Fénelon et al Neuro 2006, Fénelon et Alves J Nerol Sci 2010)
- Associated to dementia risk
- Associated to sleep disorders (cf I. Arnuff)
- Visual, Presence feeling, Multi-modal

What we hypothesis

- Due to perceptual and attentional deficits

DMN, VAN & DAN & Vision

Neural mechanisms for Visual Hallucinations

[Shine et al Prog NeuroBio 2015]

Decision criteria

Role of SC in Decision Criteria

Manipulation of SC activity alters the decision criteria

• H3: More Alteration of SC => More Hallucinations [Dolgov & McBeath, Behav Brain 2005]

Future study

- Test PD w. and wo. HV
- Compare to HC age paired

Anna Castrioto Eugénie Lhommée

Other early biomakers –I - Structural

No Structural Differences Are Revealed by VBM in 'De Novo' Parkinsonian Patients

Other early biomakers –II - Structural

		Preclinical and	Early-stage	Moderate to
Image modality	Region	prodromal PD	PD	late-stage PD
T1-weighted structural MRI	NA	+	++	++
Dopaminergic PET/SPECT	Striatum	+	+++	+++
Non-dopaminergic PET	NA	++	++	++
Metabolic and network imaging	NA	+++	+++	+++
Iron-sensitive MRI	SN	+	++	+++
Free-water imaging	aSN	-	-	++
	pSN	++	+++	+++
Neuromelanin-sensitive MRI	aSN	-	-	++
	pSN	++	+++	+++

Mitchell et al. Jama Neuro 2021

T1-weighted structural MRIPotential disease-state biomarker in preclinical,Potential progression biomarker in early-stagePD-specific progression effe require long follow-up perior	Imaging modality	Disease-state biomarker	Progression biomarker	Clinical application and potential limitations
prodromal, early-stage, and moderate to and moderate to late-stage PD (detected late-stage PD >18 mo)	T1-weighted structural MRI	Potential disease-state biomarker in preclinical, prodromal, early-stage, and moderate to late-stage PD	Potential progression biomarker in early-stage and moderate to late-stage PD (detected >18 mo)	PD-specific progression effects require long follow-up periods

Other early biomakers –III - Structural

Subtle differences Few-shot learning

Other early biomakers –III - Structural

Munoz-Ramirez et al. Art Int Med 2022

Other early biomakers –IV - Structural

Other early biomakers –IV – Resting State & Functional Connectivity Graph

Carboni et al Phy Lett E 2013

PD patients w. wo HV

Marques Ana P Park Dis 2020

