

Digital Health in the 21th Michel Dojat

▶ To cite this version:

Michel Dojat. Digital Health in the 21th. The 4th Annecy Round Table on CPR, Jean-Christophe Richard, Apr 2025, Annecy, France. hal-05048258

HAL Id: hal-05048258 https://hal.science/hal-05048258v1

Submitted on 27 Apr 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Gin Grenoble Institut Neurosciences

•

Digital Health in the 21th

The 4th Annecy Round Table on CPR

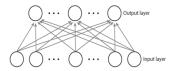
24th and 25th April 2025, The Mérieux Foundation Les Pensières Center for Global Health

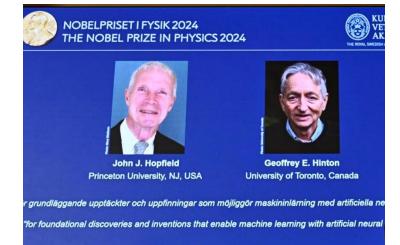
Michel Dojat Deputy Scientific Director for Digital Biology and Digital Health

I declare relationships with the company Pixyl (pixyl.ai)

I think if you work as a radiologist, you're like the coyote that's already over the edge of the cliff but hasn't yet looked down. People should stop training radiologists now. It's just completely obvious that within five years <u>deep learning</u> is going to do better than radiologists.

G. Hinton (2016)




I think if you work as a radiologist, you're like the coyote that's already over the edge of the cliff but hasn't yet looked down. People should stop training radiologists now. It's just completely obvious that within five years <u>deep learning</u> is going to do better than radiologists.

G. Hinton (2016),

Turing Prize (2018), Nobel Prize in Physics (2024)

Artificial Neural Networks

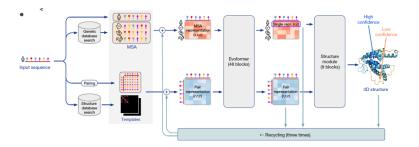
ARTICLE

2017

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹


AlphaGO: approximately 4.6 million parameters*

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819	-2
Received: 11 May 2021	
Accepted: 12 July 2021	
Published online: 15 July 2021	
Open access	
Check for updates	

John Jumper¹⁴⁶⁷, Richard Evans¹⁴, Alexander Pritzel¹⁴, Tim Green¹⁴, Michael Figurnov¹⁴, Olaf Ronnebergen¹⁴, Kathryn Turyasuvankol¹⁴, Russ Bates¹⁴, Augustin Zide¹⁴, Anna Potapenko¹⁴, Alex Bridgland¹⁴, Clemens Meyer¹⁴, Simon A. A. Kohl¹⁴, Andrew J. Ballard¹⁴, Andrew Cowie¹⁴, Bernardino Romera-Paredes¹⁴, Stanislav Nikolov¹⁴, Rishub Jain¹⁵, Jonas Adler¹, Trevon Back¹, Sitg Petersen¹, David Reiman, Ellan Clancy¹, Michal Zielinsk¹, Martin Steinegger²⁴, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Paalmeet Kohl¹⁴ & Demis Hassabia¹⁴²

approximately tens of millions of parameters parameters*

Deep Neural Networks

*: from perplexityAI

To be in the race ...

WASHINGTON — President **Donald Trump** on Tuesday talked up a joint venture investing up to **\$500 billion** for infrastructure tied to artificial intelligence by a new partnership formed by OpenAI, Oracle and SoftBank. **January**, **21t 2015**

EU launches InvestAl initiative to mobilise €200 billion of investment in artificial intelligence Feb 11, 2025

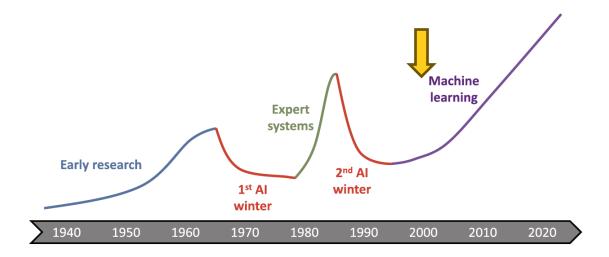
Macron pledges to catch up with Trump with €109B AI investment

"We have to be in the race," the French president says.

Feb 10, 2025

AI clusters

In 2022, the AI focus area with the most investment was medical and healthcare (\$6.1 billion); followed by data management, processing, and cloud (\$5.9 billion); and Fintech (\$5.5 billion).


Al in Health Macron wants us to be the best La Dépêche du midi Feb 2025

With a digital health program

FRANCE

To surf the (new) wave ...

Colliot 2023 Neuromethods 197 Springer

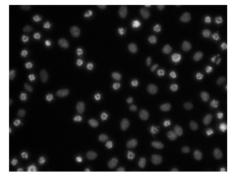
Two main streams in Al

Intelligent Agent: an entity that takes the best possible action in a situation

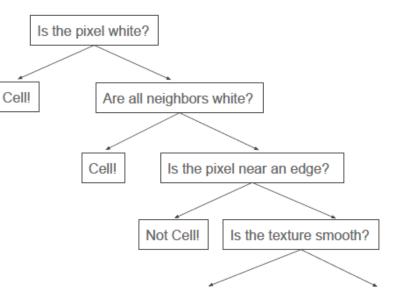
How to build such an artificial intelligent agent?

Machine Learning

- Bio-inspired
 > Artificial life
 > Neural Networks
- •Classification (SVM,...)

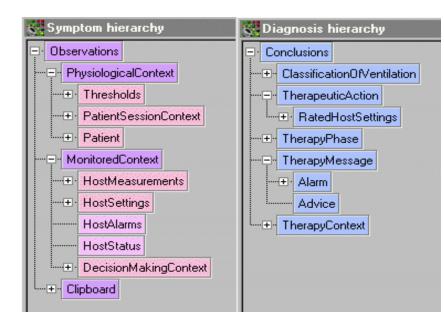

Operations on vectors

Symbolic Processing


- Problem-solving
- Planning
- Logic
- Knowledge representation
 - Common knowledge
 - Meta-knowledge
 - Ontology
- Multi-agents
- Co-construction
- Symbols manipulation

Rule-based approach

Cells vs background segmentation



[Image: Gerlich Lab]

Courtesy A. Kreshuk

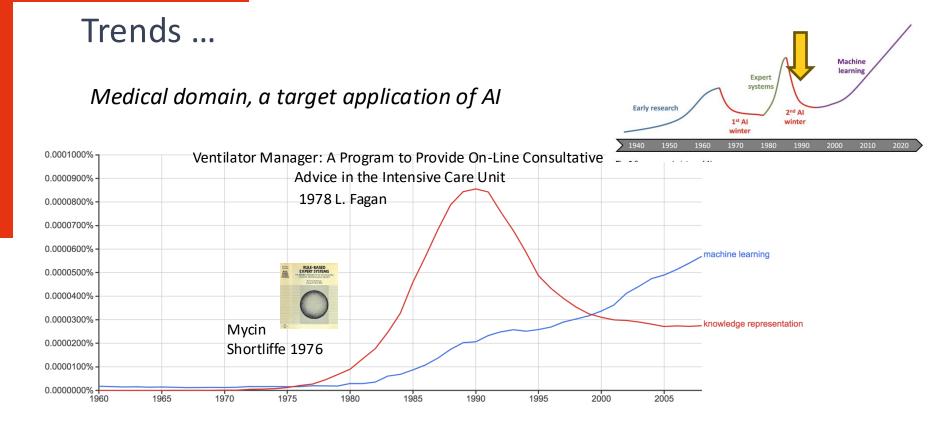
A knowledge base system for the Weaning

64 symptoms 50 diagnosis

Derivation of "	Rated_P_ASB"
Common rules f	or deriving
S->S (P_ASB [b	efore 1 Session]] IF AcuteVariableDecreaseOfInvasiveness = ESTABLISHEE AND P_ASB = KNDWN [before 1 Session]
` AND	+ 4) IF P_ASB = KNOWN [Now] AcuteFixedIncreaseOfInvasiveness = ESTABLISHED AcuteVariableDecreaseOfInvasiveness = ESTABLISHED
. –	+ "Stepwidth") IF P_ASB = KNOWN [Now] AND Stepwidth = KNOWN AND AcuteVariableIncrease0fInvasiveness = ESTABLISHED AcuteVariableDecrease0fInvasiveness = ESTABLISHED
ÂN ÂN	ow]] IF P_ASB = KNOWN [Now] D SteadyStateOfInvasiveness = ESTABLISHED AcuteVariableDecreaseOfInvasiveness = ESTABLISHED
AND	4) IF P_ASB = KNOWN [Now] AcuteFixedDecreaseOfInvasiveness = ESTABLISHED AcuteVariableDecreaseOfInvasiveness = ESTABLISHED
	eginOfInstability]] IF P_ASB = KNOWN [BeginOfInstability] AND TolerateInstabilityDuringAdaptation = ESTABLISHED AcuteAdjustment = ESTABLISHED
AND	2) IF P_ASB = KNOWN [Now] TolerateInstabilityDuringPerturbedMaintain = ESTABLISHED AcuteAdjustment = ESTABLISHED
EXCEPTION: IF OR Inst	ow])IF P_ASB = KNDWN [Now] AcuteAdjustment = STABLISHED abilityHandling = ESTABLISHED jularAdjustment = ESTABLISHED
O AND	w'') IF P_ASB_low = KNOWN TolerateInstabilityDuringObservation = ESTABLISHED R TolerateInstabilityDuringNormalMaintain = ESTABLISHED AcuteAdjustment = ESTABLISHED
	"Stepwidth") IF P_ASB = KNOWN [Now] AND Stepwidth = KNOWN AND TolerateInstabilityDuringPostponedMaintain = ESTABLISHED AcuteAdjustment = ESTABLISHED
EXCEPTION: IF	"Stepwidth") IF P_ASB = KNOWN [Now] AND Stepwidth = KNOWN AND RegularAdjustment = ESTABLISHED AcuteAdjustment = ESTABLISHED abilityHandling = ESTABLISHED

Evita: Smartcare

Dojat et al. Am J Res Crit Care Med 96 Dojat et al. Am J Res Crit Care Med 00



Some limitations ...

- Traditional rule-based systems have continue to perform in clinical tasks (adverse drug event ...)

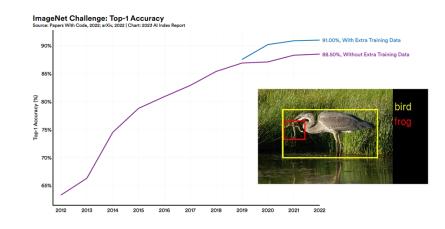
BUT:

- Difficult to formalize expert's knowledge
- A lot of situations to represent
- Costly to develop and maintain

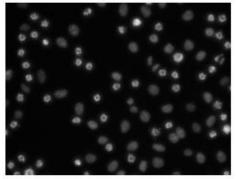
How did AI (DNN) take the power?

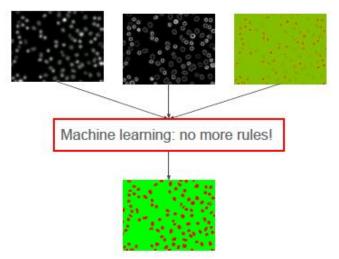
Back to the future ...

How did AI take the power?


Pioneered the deep learning revolution ...

[Krizhevsky et al 2012]

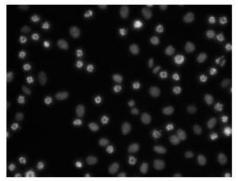

ImageNet 14 M images 20000 different object categories 2022 91% accuracy


8 layers (5 convolutional + 3 fully connected), 60 Millions parameters
1.2 M annotated images, 1000 classes => reduced the top-5 error rate from ~26% to 15.3%

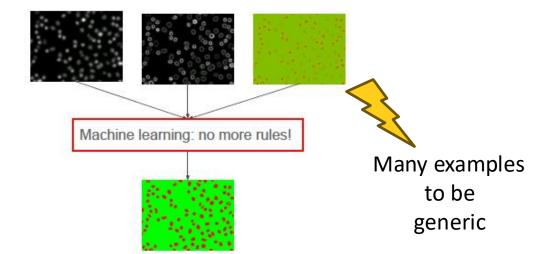
ML approach: a new paradigm

Cells vs background segmentation

[Image: Gerlich Lab]



Automatic discovery of probabilistic regularities in the provided examples

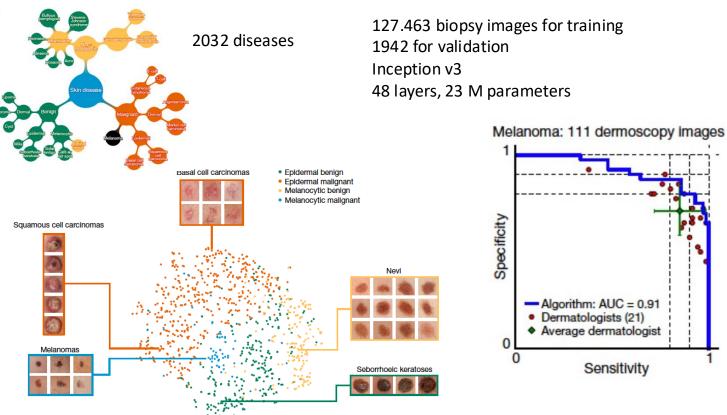

Courtesy A. Kreshuk

ML approach: a new paradigm

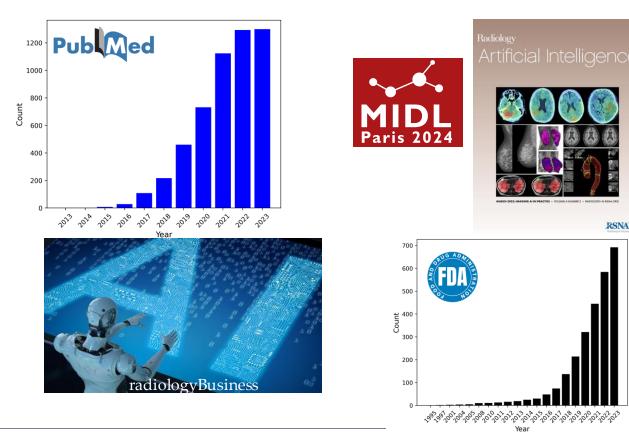
Cells vs background segmentation

[Image: Gerlich Lab]

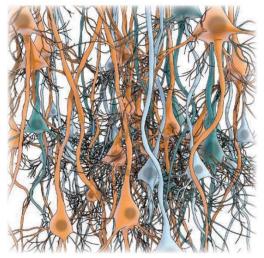
Automatic discovery of probabilistic regularities in the provided examples

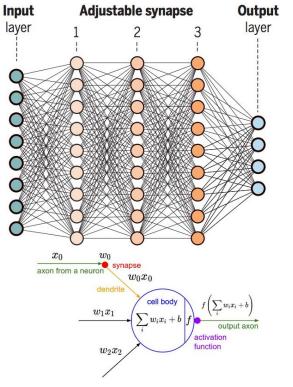

Courtesy A. Kreshuk

How did AI take the power in medical imaging?


Esteva et al

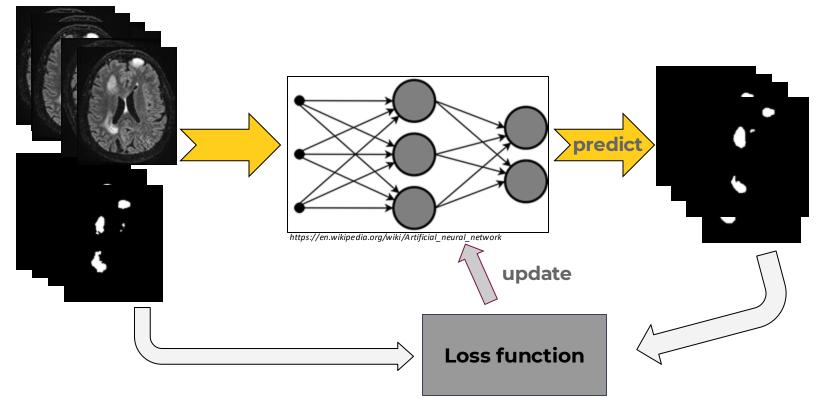
Nature 2017

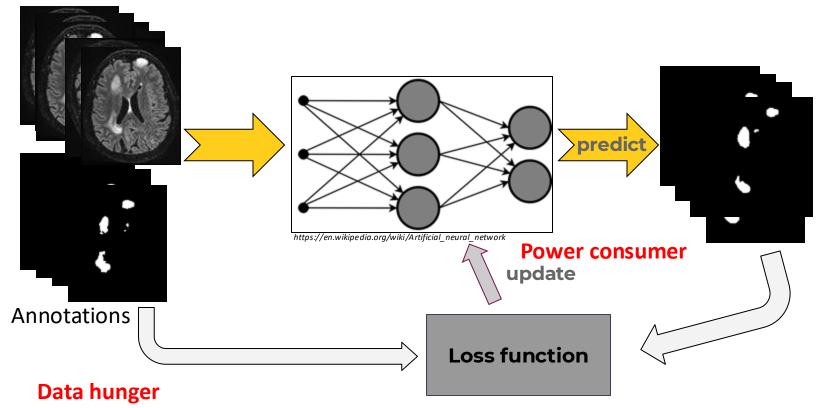

Skin cancer classification



Automatic analysis of medical images: The winner takes all ...

How does it works?




Ullman Science 2019

Artificial neurons (bio-inspired)

How does it works?



How does it works?

A brieve old bioinspired story: the pioneers

1940-1970

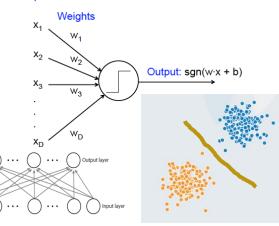
Hodgkin, A. L., & Huxley, A. F. (1952) Neuros den tists

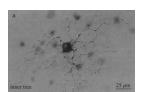
Temporal dynamic in synapses modification

Neuropsychology Learning-Syn ap tic modification $w_{ij} = \frac{1}{p}\sum_{k=1}^p x_i^k x_j^k,$

Donald Hebb (1949)

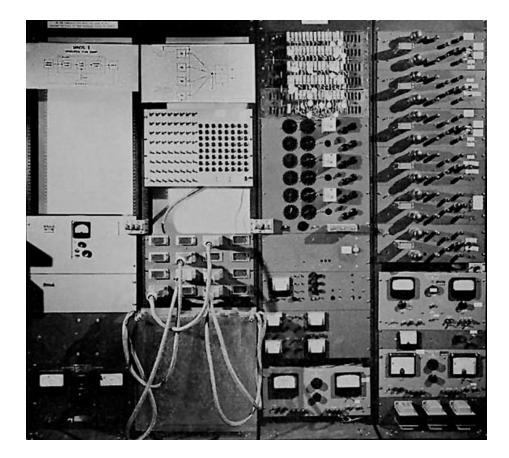
The state of the s

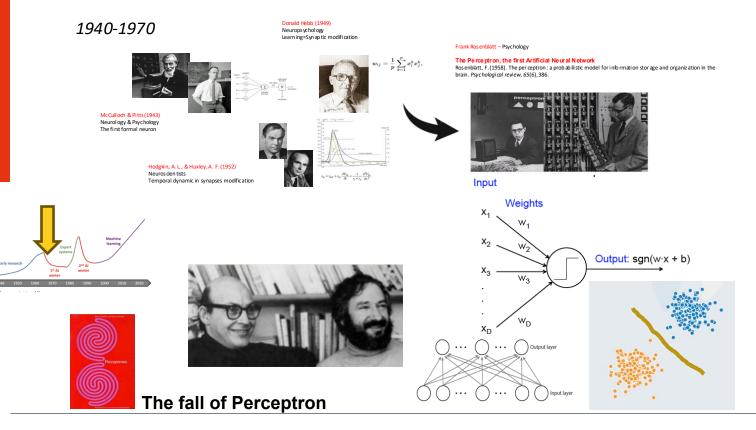



The Perceptron, the first Artificial Neural Network

Rosenblatt, F. (1958). The per ceptron : a prob ab ill stic model for information stor age and organization in the brain. Psychological review, 65(6), 386.

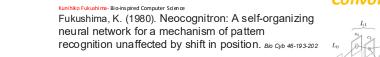
Input



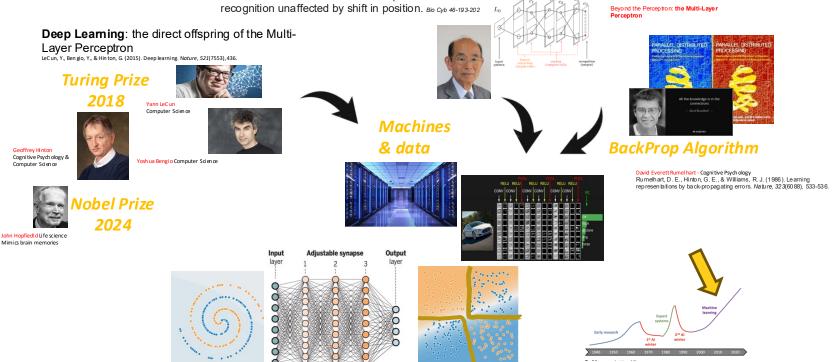

The pioneers ...

Minos

1960 Stanford Research Institute



A brieve bioinspired story: the pioneers


The new story ...

1980-....

Convolutional filter

 $L_2 = L_3$

AI for Medical Imaging

Reconstruction

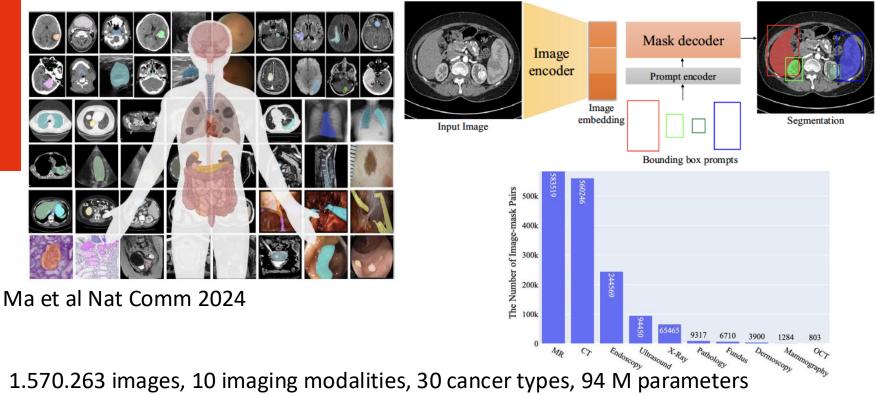
- Improve S/N, faster acquisition, finger printing

Analysis

- Classification, Segmentation, Anomalies detection, Triage, Signature

Generation

- Another modality synthesis, Report, Prediction

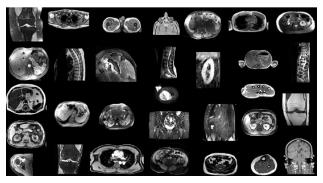

Fusion

- Time series, across modalities and subjects

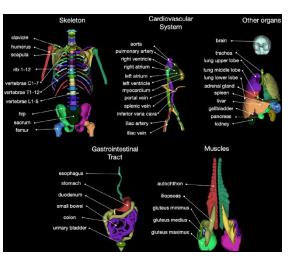
Repositories

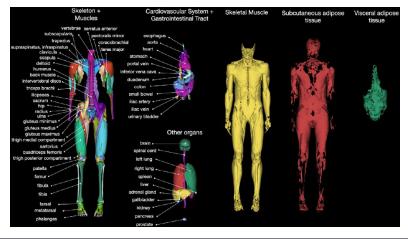
- Large databases: MJ Fox, Enigma, UK BioBank, Ofsep, ...

A foundation model for medical image segmentation: MedSAM (Segment Anything Model)



Total Segmentator


Wassserthal et al Radiology: AI 2024


12043 (CT), 104 structures, 27 organs, 59 bones, 10 muscles

Total Segmentator MRI

D'Antonoli et al Radiology 2025 1143 (616 MRI, 527 CT), 80 structures

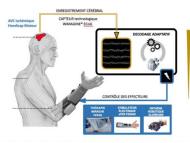
Main medical applications

Neurodegenerative diseases, aging

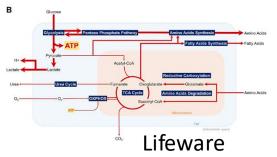
- support to diagnostic, prediction,...

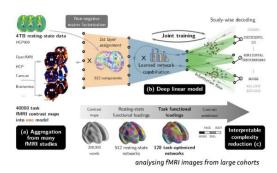
Oncology

-mechanisms, new treatment

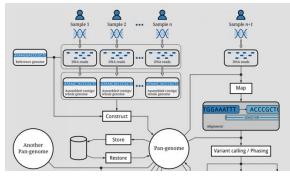

Handicap, rehabilitation,

- neuroprothesis, BCI


Pharmacology, drug resistance -math. epidemiology


Public health -clinical trials

Medical robotics -surgery, endoscopy



Mind

Aramis

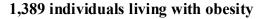
Genscale

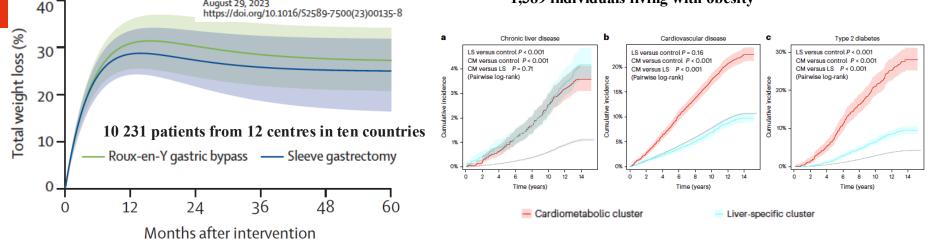
Modal and CHU Lille

Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

Patrick Saux*, Pierre Bauvin*, Violeta Raverdy, Julien Teigny, Hélène Verkindt, Tomy Soumphonphakdy, Maxence Debert, Anne Jacobs, Daan Jacobs, Valerie Monpellier, Phong Ching Lee, Chin Hong Lim, Johanna C Andersson-Assarsson, Lena Carlsson, Per-Arne Svensson, Florence Galtier, Guelareh Dezfoulian, Mihaela Moldovanu, Severine Andrieux, Julien Couster, Marie Lepage, Erminia Lembo, Ornella Verrastro, Maud Robert, Paulina Salminen, Geltrude Mingrone, Ralph Peterli, Ricardo V Cohen, Carlos Zerrweck, David Nocca, Carel W Le Roux, Robert Caiazzo, Philippe Preux, François Pattou

Published Online


August 29, 2023


Lancet Digit Health 2023; 5: e692-702

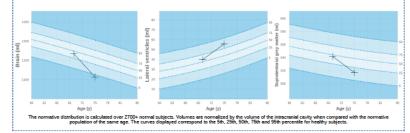
Data-driven cluster analysis identifies distinct types of metabolic dysfunctionassociated steatotic liver disease

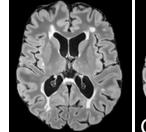
Accepted: 30 August 2024 nature medicine

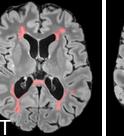
MS:Lesion load quantification

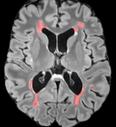
#PIXYL

Pass


Pixyl.Neuro.BV Longitudinal report


1	Name: John S	Smith Sex: M Born in: 1945 ID: 2620
		n 1, 2020, Prior Visit Date: Jan 1, 2015
		trol
		Observations


THIS AUTOMATED REPORT DOES NOT REPLACE MEDICAL EXPERTISE. PLEASE REFER TO THE RADIOLOGY REPORT.


Brain T1 volumetry and comparison with normative population values ----

	Prior visit	Current visit			rior visit		sit
	Volume(ml)	Volume(ml)	Change(%)	Normal range(ml)			
Brain	1167.37	1106.92	-5.18%	1113.29 - 1202.98			
Supratentorial grey matter	541.59	517.07	-4.53%	504.91 - 572.4			
Supratentorial white Matter	495.43	461.44	-6.86%	433.03 - 509.91			
Cerebellum GM+WM	130.35	128.41	-1.49%	128.34 - 167.72			
Left lateral ventricle	19.93	27.89	39.94%	13.02 - 32.26			
Right lateral ventricle	19.96	27.87	39.63%	12.39 - 29.96			

Pixyl.Neuro.MS Longitudinal report

#PIXYL

Patient Information Name: Jane Doe Sex: F Born Visit Date: Oct 5, 2023, Prior Visi		
Quality Control		
(i)	Observations	
Pass	-	

THIS AUTOMATED REPORT DOES NOT REPLACE MEDICAL EXPERTISE. PLEASE REFER TO THE RADIOLOGY REPORT.

Disease Activity -----

	T2 FLA	IR lesions	
New	7	Enlarging	2

Lesion Load -----

	Volume(ml)	Change(ml)	Lesion count *
Periventricular	9.87	0.61	≥1
Juxtacortical	2.27	0.47	≥1
Infratentorial	0.25	-0.09	≥1
Deep WM	0.95	0.1	≥1
Whole Brain	13.34	1.09	≥ 9 **

The lesion count is based on the 2017 revision of the McDonald criteria.

* The Barkhof MRI criteria for MS diagnosis includes at least 9 lesions on T2-weighted images.

OxyTC: French national multicenter study

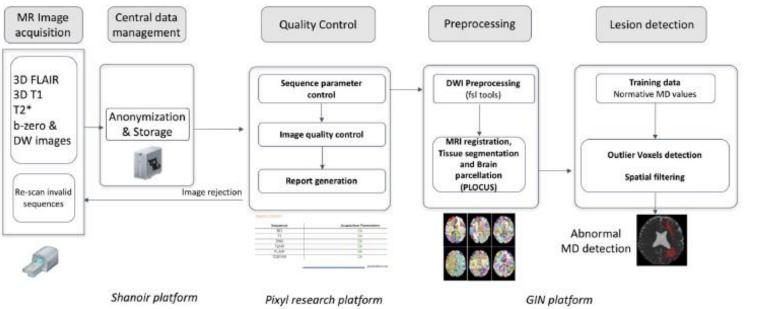
Intracranial pressure monitoring with and without brain tissue oxygen pressure monitoring for severe traumatic brain injury in France (OXY-TC): an open-label, randomised controlled superiority trial

The Lancet 2023; 22: 1005-14

Jean-François Payen, Yoann Launey, Russell Chabanne, Samuel Gay, Gilles Francony, Laurent Gergele, Emmanuel Vega, Ambroise Montcriol, David Couret, Vincent Cottenceau, Sebastien Pili-Floury, Clement Gakuba, Emmanuelle Hammad, Gerard Audibert, Julien Pottecher, Claire Dahyot-Fizelier, Lamine Abdennour, Tobias Gauss, Marion Richard, Antoine Vilotitch, Jean-Luc Bosson, Pierre Bouzat for the OXY-TC trial collaborators*

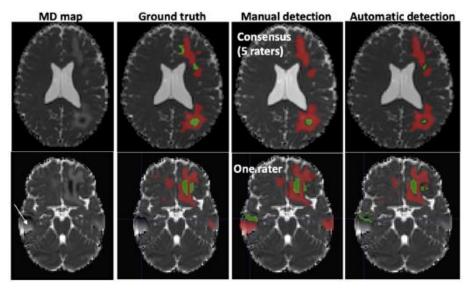
Summary

Background Optimisation of brain oxygenation might improve neurological outcome after traumatic brain injury. The OXY-TC trial explored the superiority of a strategy combining intracranial pressure and brain tissue oxygen pressure (PbtO₂) monitoring over a strategy of intracranial pressure monitoring only to reduce the proportion of patients with poor neurological outcome at 6 months.

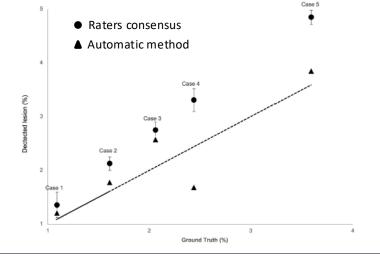

Interpretation After severe non-penetrating traumatic brain injury, intracranial pressure and PbtO₂ monitoring did not reduce the proportion of patients with poor neurological outcome at 6 months. Technical failures related to intracerebral catheter and intracerebral haematoma were more frequent in the intracranial pressure and PbtO₂ group.

144 vs 147 patients

MRI study


Goal: detection of abnormal mean diffusivity (MD) and fractional anisotropy (FA)

reduction MD cytotoxic edema, increase MD vasogenic edema



N=85, Gose 1-4, Diffusion Tensor Imaging, 23 centres

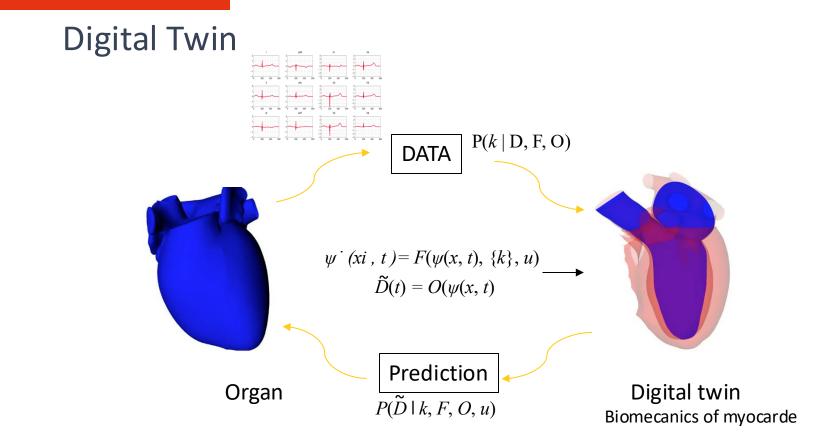
MRI study

Mistral et al 2022 Front Neuro

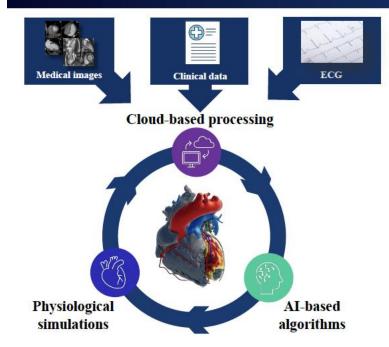
Patients data: work in progress

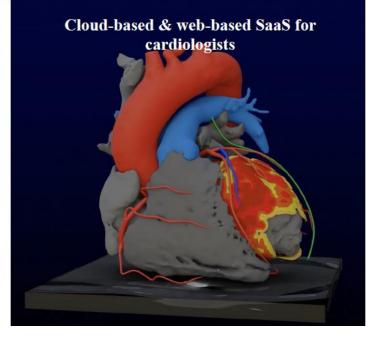
Verare Project

Inria Mission Covid-19



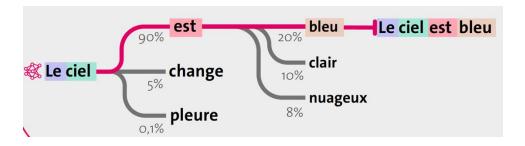
65 patients included 2025


Seamless, courtesy A. Lecuyer


Modelling & Control

Inspired by Wang et al Natl Sci Rev, 2024

inHEART: a cardiac twin



Courtesy N. Ayache

Text + Image + voice ...

No grammatical rules !!!

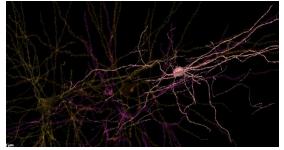
Probability of words sequences based on a large corpus of text

	GPT-1	GPT-2	GPT-3	GPT-4	
Date	2018	2019	2022	2023	-
Nb of parameters	117 M	1.5b	175b	?	
Nb of layers	12	48	96	?	
Context length	512	1024	20248	?	
Dimensions	768	1600	12288	?	

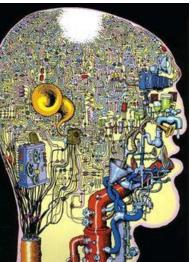
Text (LLM) + Image + voice ...

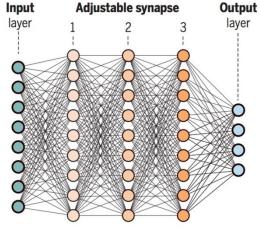
For GP

- Analyse of medical files
- Writing of medical report
- Action coding
- Training
- Analyse of medical publications

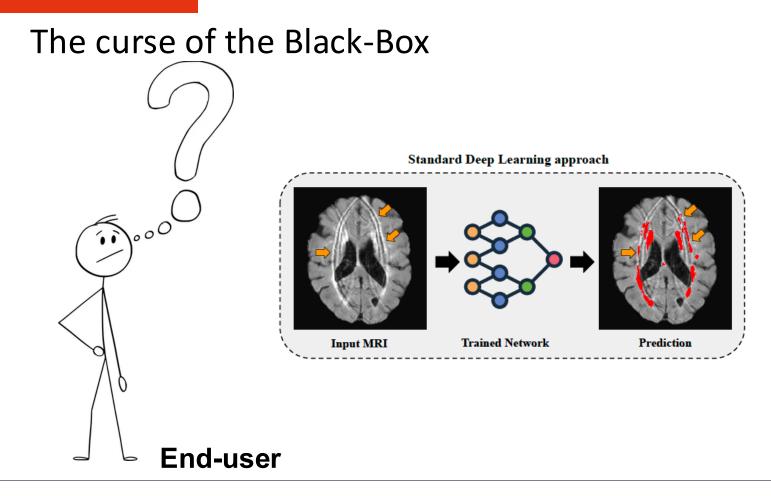

For Researchers

- Medical decision support
- Triage, cohort constitution
- Discovery of signatures
- Evolution prediction ...


For Patients


- Documentation
- Prevention
- Patient interview (chatbot)
- Follow-up chronic disease

The curse of the Black-Box


[Shapson-Coe et al. Science 384, 635 (2024)]

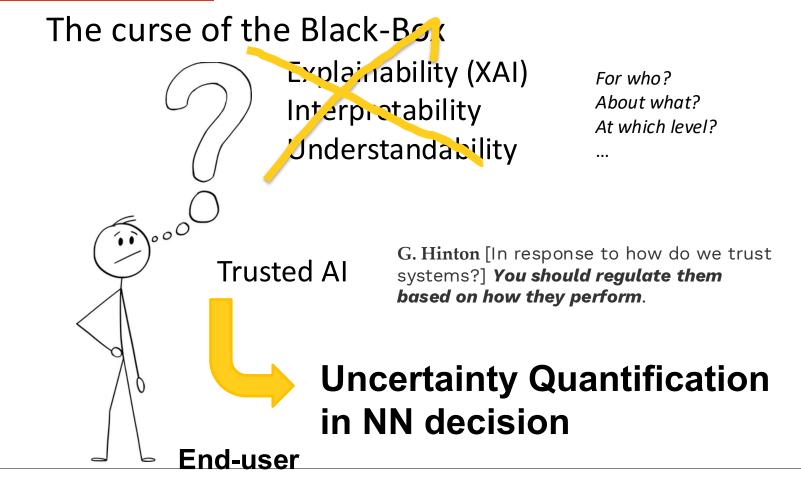
[Crumb, Says 1967 Num 1]

43 - Digital Heath in the 21th

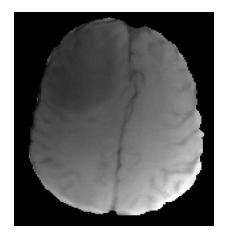
The curse of the Black-Box

000 **End-user**

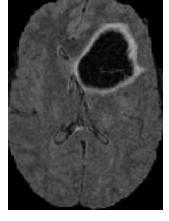
Explainability (XAI) Interpretability


Understandability

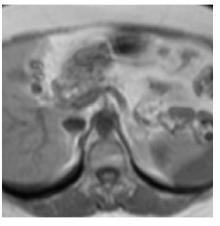
[Erasmus et al 2021 Philosophy & Technology]


For who? About what? At which level?

• • •



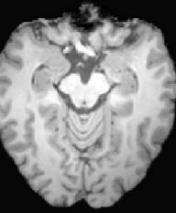
DLL trained for Gioblastoma detection on T1w



Artefacted T1w

Healthy subject

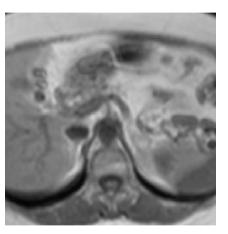
FLAIR

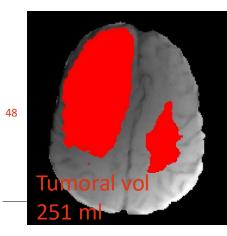


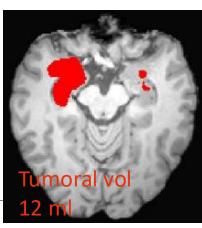
Abdominal T1w

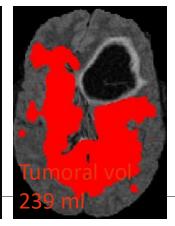


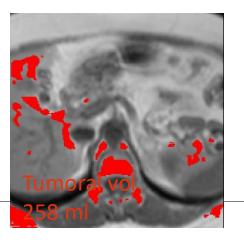
Artefacted T1w


Know-it-all

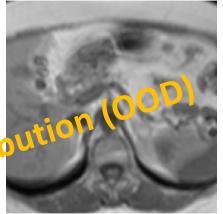

Healthy subject



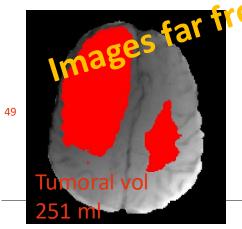

FLAIR

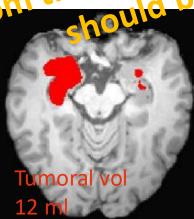


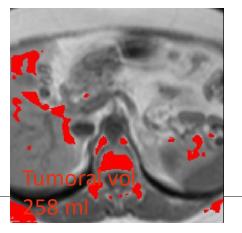
Abdominal T1w



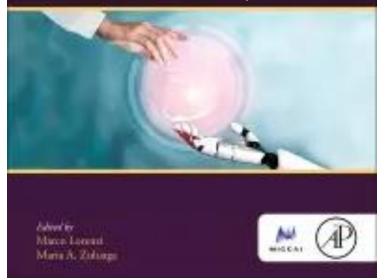
Know-it-all


Artefacted T1w


Healthy subject delighter



Abdominal T1w



TRUSTWORTHY AI IN MEDICAL IMAGING

Editors: Marco Lorenzi, Maria A Zuluaga December 1, 2024

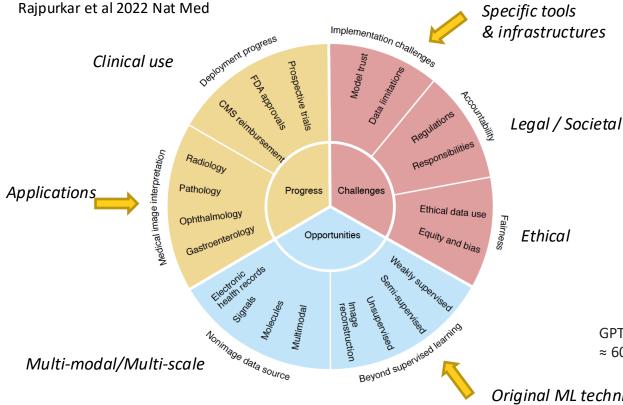
Section 1 – Robustness

Section 2 - Validation, Transparency and Reproducibility

Section 3 – Bias and Fairness

Section 4 - Explainability, Interpretability and Causality

Section 5 - Privacy-preserving ML Section 6 - Collaborative Learning


Section 7 - Beyond the Technical Aspects

AI for Medical Imaging

- Pros:
 - Excellent performances
 - Automatic feature learning
 - Knowledge emergence
 - On the shelves tools
 - Discharge Expert
 - Automatic Quantification
- Cons:
 - Importance of Image Quality
 - Annotation
 - Data hungry
 - Computational cost
 - Black box / trustability
 - Specific to one problem
 - Adversarial attack
 - Catastrophic forgetting
 - Ethic, social and law
 - Needs for specific tools &infra

Meta used 22 million liters of water training its LLaMA-3 open source Al model

Frugality: Small is beautiful

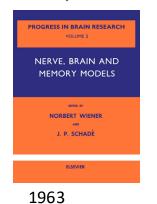
GPT-4, \approx 10 GWh for training, \approx 6000 x energy a European per year

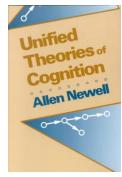
Original ML techniques

Intelligent Agent: an entity that takes the best possible action in a situation

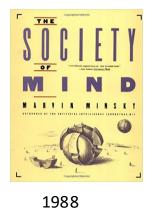
How to build an artificial intelligent agent?

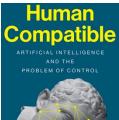
Test our models of natural intelligent agents?


- Digital Heath in the 21th



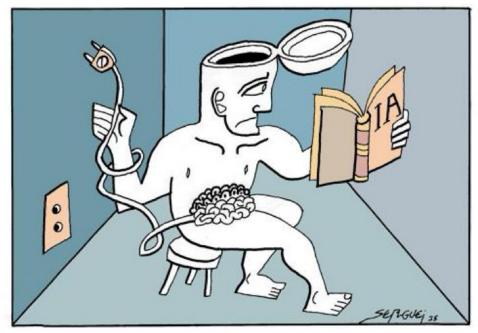
Computer & Brain



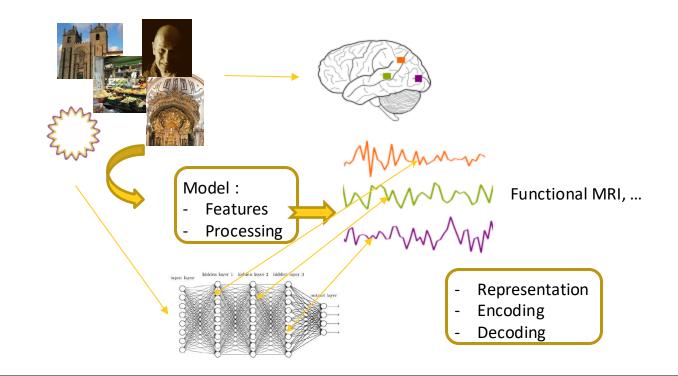

1958 Yale University Press, New Haven

1982

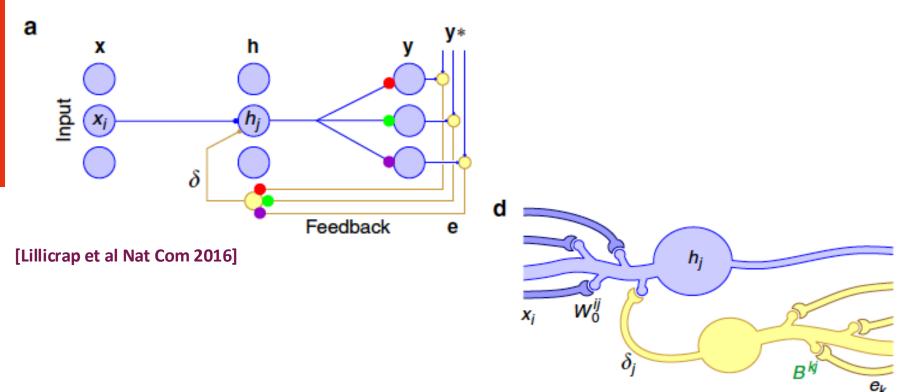
2019


 What is consciousness, and could machines have it?

 Stanislas Dehaene,^{1,4}* Hakwan Law,^{3,4} Sid Koulder³


 2017 Science

NN: a framework for modelling the computational brain?


Instructions for use

NN: a framework for modelling human vision?

Backprop: the weight transport problem

Take home messages

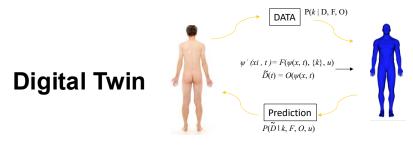
- NN: A disruptive technology in Health

- From bedside to the understanding of complex patho-physiological states

- Several drawbacks

- Data hunger
- Consummation
- To be in the race
- NN: Model to investigate brain functions

To conclude


Human Cognitive Limitations

Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support

Alan H. Morris 2017

« I counted **236** variable categories being considered by the intensive care unit clinicians » (wo various notes)

« Those experts should be aided by detailed **computer protocols** that embrace core **physiological constructs** and deliver personalized clinical instructions. »

To conclude

Bernoulli_Lab

AP-HP - Inria joint laboratory Daniel Bernoulli

Dans le cadre d'une collaboration entre le département d'anesthésieréanimation de l'hôpital Lariboisière Greater Paris University Hospitals - AP-HP et Inria (équipes #COMMEDIA et #M3DISIM), des outils de modélisation et simulation numérique sont développés afin de construire des jumeaux <u>numériques permettant d'améliorer le monitorage</u>, notamment cardiovasculaire, des patient es sous anesthésie générale. La personne recrutée, pour une durée de 15 mois (prise de poste souhaitée en juin 2025), aura pour mission de développer des outils de simulation permettant ainsi la mise en oeuvre de jumeaux numériques des systèmes cardiovasculaire et cardiopulmonaire, et confrontera également les résultats de simulation aux données cliniques de manière à en évaluer le domaine de validité.

Pour plus de détails et postuler, voir https://lnkd.in/eE53PWiz

Céline Grandmont François Kimmig Alexandre Mebazaa Bernoulli Lab Show translation

Thank you!

www.inria.fr https://neurosciences.univ-grenoble-alpes.fr/fr/micheleojat

Michel.Dojat@inria.fr

